Adding Consecutive Squares

Home ] FOIL Method ] Double & Half Method ] Squaring Numbers ] Squaring Num End In 5 ] Squaring Num End In 6 ] Squaring Num End In 7 ] Squaring Num End In 8 ] Squaring Num End in 9 ] Squaring Nums 40-49 ] Squaring Nums 50-59 ] Squaring Nums 90-99 ] Difference of 2 Squares ] Mult Nums End in 5 ] Mult Nums One's Add 10 ] Mult Nums One's Add 5 ] Mult Nums Same Ten's Digits ] Mult Nums Tens Add 10 ] Mult Nums Less 100 ] Mult Nums More 100 ] Mult Nums More 100 Less 100 ] AB + BC ] AA + 2AA ] AA + 3AA ] AA + 7AA ] AA + 10AA ] Mult Nums Less 1000 ] Mult Nums More 1000 ] Add 2 Squares ] Product of 4 Nums ] [ Adding Consecutive Squares ] Squaring: 101a ] Adding Squares #2 ]

(*View/Download .pdf file*)

Adding 2 Consecutive Square Numbers:

A.  From algebra we know:

a2 + (a+1)2 = 2(a)(a+1) + 1

B.  This works for any consecutive squares.  However if one of the squares is a multiple of 5, the problem becomes very simple:

a2 + (a+1)2 = 10 [(a)(a+1)] + 1

                  5

C.  In other words, the answer always ends in a 1.  And you can divide one of the numbers by 5 and multiply by the other to get the first part of the answer.

D.  Examples:

Ex [1]  352 + 362 = _______

a.  Write down 1.

b.  35 ÷ 5 = 7.  7 x 36 = 252.  Write 252.

c.  The answer is 2521.

Ex [2]  552 + 542 = ________

a.  Write down 1.

b.  55 ÷ 5 = 11.  11 x 54 = 594.  Write 594.  See Multiplying By 11.

c.  The answer is 5941.

 

Back to top