[ Home ] [ FOIL Method ] [ Double & Half Method ] [ Squaring Numbers ] [ Squaring Num End In 5 ] [ Squaring Num End In 6 ] [ Squaring Num End In 7 ] [ Squaring Num End In 8 ] [ Squaring Num End in 9 ] [ Squaring Nums 40-49 ] [ Squaring Nums 50-59 ] [ Squaring Nums 90-99 ] [ Difference of 2 Squares ] [ Mult Nums End in 5 ] [ Mult Nums One's Add 10 ] [ Mult Nums One's Add 5 ] [ Mult Nums Same Ten's Digits ] [ Mult Nums Tens Add 10 ] [ Mult Nums Less 100 ] [ Mult Nums More 100 ] [ Mult Nums More 100 Less 100 ] [ AB + BC ] [ AA + 2AA ] [ AA + 3AA ] [ AA + 7AA ] [ AA + 10AA ] [ Mult Nums Less 1000 ] [ Mult Nums More 1000 ] [ Add 2 Squares ] [ Product of 4 Nums ] [ Adding Consecutive Squares ] [ Squaring: 101a ] [ Adding Squares #2 ]
(*View/Download
.pdf file)
(**) Adding Squared Numbers In The
Form: a2 + (2a)2:
A.
This method is very easy since from algebra we know:
a2 +
(2a)2 = 5a2
B.
Therefore, you square the smaller number, then multiply by 5 for the
answer (see section I in Multiplying By Specific Numbers).
Ex [1]
112 + 222 =_________.
a)
112 = 121.
b)
121 x 5 = 605.
c)
The answer is 605.
Ex [2] 252 + 502 =_________.
a)
252 = 625. See Squaring
Numbers Ending in 5.
b)
625 x 5 = 3125.
c)
The answer is 3125.
Back to top