a+(a+b)+...+(a+nb)

Home 1 + 2 + ... + n 1 + 3 + 5 + ... + 2n-1 a+(a+b)+...+(a+nb) 1 + 4 + 9 + ... + n^2 1^3 + 2^3 +...+ n^3 1^3 - 2^3 + 3^3 -...+ n^3 Add Decreasing Series Sub Decreasing Series Add Infinite Series Finding The Next Term Finding The nth Term Add Factorials

(*View/Download .pdf file)

Adding a geometric sequence:

   A.  There are many ways of adding a geometric sequence:

1.  If you can not see all the digits then:

[(first number) + (last number)] x number of terms

2

*Note:  This way works for any sequence.  If you like you can use this method for step 2 and step 3.

Ex [1]  4 + 8 + 12 + ... + 48 =_________.

a)  Notice the number of terms is 12.

b)  (4 + 48) x 12 / 2 = 52 x 6 = 312.

c)  The answer is 312.

Ex [2]  7 + 13 + 19 + ... + 47 =_________.

a)  Notice the number of terms is 11.  (*All you have to do is subtract 3 and divide by 4.)

b)  (47 + 7) x 11 / 2 = 27 x 11 = 297.  See Multiplying by 11.

c)  The answer is 297.

2.  If you can see all the digits and there is an odd number then:

Multiply the middle digit by the number of terms

Ex [3]  15 + 25 + 35 + 45 + 55 =_________.

a)  The middle digit is 35 and there are 5 numbers.

b) 35 x 5 is 175.

c)  The answer is 175.

Ex [4]  7 + 9 + 11 + 13 + 15 + 17 + 19=_________.

a)  The middle digit is 13 and there are 7 numbers.

b)  13 x 7 = 91.

c)  The answer is 91.

3.  If you can see all the digits and there is an even number then:

Add the middle 2 digits and multiply by half the number of terms

Ex [5]  6 + 12 + 18 + 24 + 30 + 36 =_________.

a)  (18 + 24) x 3 = 42 x 3 = 126.

b)  The answer is 126.

Ex [6]  9 + 12 + 15 + 18 + 21 + 24 =_________.

a)  (18 + 15) x 3 = 33 x 3 = 99.

b)  The answer is 99.

Back to top