Subtracting A Sequence In The Form: $1/a - 1/a^2 - \dots - 1/a^n$

A. To solve this sequence the denominator is always a ⁿ, and the numerator is:

$$(a^{n-1} - a^{n-2} - \dots - a - 1)$$

B. Basically what this says is take the next to last denominator and subtract every value to its left from that then subtract 1.

C. Examples

- Ex [1] $\frac{1}{2} \frac{1}{4} \frac{1}{8} \frac{1}{16} =$
 - a. The denominator is 16.
 - b. The numerator is 8 4 2 1 = 1.
 - c. The answer is $^{1}/_{16}$.
- Ex [2] $\frac{1}{4} \frac{1}{16} \frac{1}{64} \frac{1}{256} =$
 - a. The denominator is 256.
 - b. The numerator is 64 16 4 1 or 64 20 1 = 43.
 - c. The answer is $^{43}/_{256}$.
- D. In problems like Ex [1] where the denominator are 2^n , the answer will always be $1/2^n$.