Adding Sequences In The Form: $1^3 - 2^3 + 3^3 - ... + n^3$

- A. In adding sequences of this nature there are two possibilities:
 - 1. n is odd
 - 2. n is even
- B. If n is odd then use the formula:

$$a^{2}(4a-3)$$
, where $a=^{(n+1)}/_{2}$

C. If n is even then use the formula:

-
$$a^2(4a+3)$$
, where $a = n/2$

- D. Examples
 - Ex [1] $1^3 2^3 + 3^3 4^3 + 5^3 =$ _____
 - a. In this case a = 3, since ${}^{5+1}/{}_2 = 3$.
 - b. So since 5 is odd, we use $3^{2}(4(3)-3) = 9(9) = 81$.
 - c. The answer is 81.
 - Ex [2] $(6^3 + 4^3 + 2^3) (5^3 + 3^3 + 1^3) =$
 - a. In this case, the problem is switched where the odds are negative which only negates the negative from our equation.
 - b. a = 3, since $\frac{6}{2} = 3$.
 - c. So, $3^{2}(4(3)+3) = 9(15) = 135$.
 - d. The answer is 135.