Multiplying 2 Numbers Whose Ten's Digits Are The Same And Whose One's Digits Add To 5:

A. From algebra we learn:

$$(10a + b) (10a + (5-b)) =$$

1. $100(a^2 + a^2/2) + 10(0) + b(5-b)$, if a is even
2. $100(a^2 + a^{-1}/2) + 10(5) + b(5-b)$, if a is odd

- B. Using numbers instead of variables we get the following:
 - 1. Multiply the one's digits. Write this down.
 - 2. If a is even, write 0. If a is odd, write 5.
 - 3. If a is even, add a_2 to a^2 . Write this value down.
 - 4. If a is odd, add $a^{-1}/2$ to a^2 . Write this value down.
- C. Examples:
 - Ex [1] 41 x 44 = _____
 - a. Multiply $1 \ge 4 = 4$. Write down 4.
 - b. Since a=4 is even, write 0.
 - c. Add $4^2 + \frac{4}{2} = 18$. Write 18.
 - d. The answer is 1804.
 - Ex [2] 132 x 133 = _____
 - a. Multiply $2 \ge 3 = 6$. Write 6.
 - b. Since 13 is odd, write 5.
 - c. Add $13^2 + \frac{13 1}{2} = 169 + 6 = 175$.
 - d. The answer is 17556.
- D. This trick works, but only if the last numbers add to 5. For a more general formula I suggest using <u>Multiplying 2 Numbers With The Same Ten's Digit</u>.