Finding Remainders:

- A. If you are given an expression or function and asked to find the remainder after dividing a number or other function, there are simple ways of solving this quickly.
 - 1. If given an expression, create new numbers by finding the remainder of each term, then solve the simplified expression and find the remainder.
 - Ex [1] $(8 \times 5 + 6^2) \div 4$ has a remainder of _____.
 - a. Finding the remainder of term first, we can rewrite the expression as: $(0 \ge 1 + 2^2) \div 4.$
 - b. Evaluating we get: $4 \div 4$, which has a remainder of 0.
 - c. The answer is 0.
 - Ex [2] $[29 \text{ x} (14+5)] \div 3$ has a remainder of _____.
 - a. Finding the remainder of each term first, we can rewrite the expression as: $2 \ge (2+2) \div 3$.
 - b. Evaluating we get $8 \div 3$, which has a remain der of 2.
 - c. The answer is 2.
 - Ex [3] If x_8 has a remainder of 5, and y_8 has a remainder of 3, then $x_8/8$ has a remainder of _____.
 - a. In this problem, we simply multiply 5 and 3 and find the remainder after it is divided by 8.
 - b. $5 \ge 3 = 15$, which has a remainder of 7 after being divided by 8.
 - c. The answer is 7.
 - 2. Sometimes, instead of an expression the problem gives functions. Simply solve the function in the denominator for 0 and plug this value into the function in the numerator.
 - Ex [4] $(3x^2 + 5x 4) \div (x 2)$ has a remainder of _____.
 - a. Solve: x 2 = 0. We get x = 2.
 - b. Plugging 2 into the equation we get: $3(2^2) + 5(2) 4$.
 - c. Evaluating we get: 12 + 7 4 which equals 13.
 - d. The answer is 13.