Comparing Fractions:

A. When comparing fractions, we often need to know which fraction is smaller or larger.

$$\frac{a}{b}$$
 ? $\frac{c}{d}$

1. To solve this quickly you can use cross-multiplication to determine which fraction is smaller or larger:

ad ? bc
$$\frac{a}{b}$$
 $\sqrt{\frac{c}{d}}$

- 2. In other words, if ad > bc then the fraction on the left is larger. If ad < bc, then the fraction on the right is larger. If ad = bc, then the 2 fractions are equivalent.
 - Ex [1] Which is greater: $\frac{5}{6}$ or $\frac{7}{9}$?
 - a) Using the rule of cross-multiplication we can compare 9×5 and 6×7 .
 - b) $9 \times 5 = 45$.
 - c) $6 \times 7 = 42$.
 - d) Since 45 > 42, the fraction on the left is greater.
 - e) So the answer is $\frac{5}{6}$.
- B. Sometimes instead of giving two fractions, the problem will give one fraction and one decimal. In problems like these, simply change the decimal to a fraction (it does not have to be in simplest terms) and compare using this method.

Ex [1] Which is smaller: .54 or
$$\frac{6}{11}$$
?

- a) You can change .54 to $^{54}/_{100}$ (there is no need to simplify).
- b) Using cross-multiplication we can compare 54×11 and 6×100 .
- c) $54 \times 11 = 594$
- d) $6 \times 100 = 600$.
- e) Since 594 < 600, the fraction (or in this case the decimal) on the left is smaller.
- f) The answer is .54.

C. In problems like Ex [1] Part B, it would be faster if you knew that $^{6}/_{11}$ = .5454... Therefore, <u>memorizing the fractions</u> will be useful in situation like these.