Multiplying Fractions In The Form: $a \times \frac{a}{b}$

A. From algebra we learn:

$$a \times \frac{a}{b} = a - (b - a) + \frac{(b - a)^2}{b}$$

*Note: Since you are squaring (b - a) it does not matter if you use $(b - a)^2$ or $(a - b)^2$

- B. Use the following steps:
 - 1. The denominator is always b.
 - 2. Subtract the values b and a and square it. This is the numerator.
 - 3. If the resulting fraction is proper, write it down, otherwise "fix" it and carry.
 - 4. If ^a/_b is proper: subtract the difference of b and a from a to get the whole number.
 - 5. If $^{a}/_{b}$ is improper: add the difference of b and a to a to get the whole number.

Ex [1] 13 x
$$\frac{13}{15}$$
 = _____ (mixed number).

- a) $(15-13)^2 = 4$. This is the numerator.
- b) Since $\frac{4}{15}$ is a proper fraction we write it down.
- c) Since the fraction $^{13}/_{15}$ is proper, we subtract the difference, 2, from 13, which equals 11. This is the whole number.
- d) The answer is $11^{4}/_{15}$.

Ex [2] 8 x
$$\frac{8}{5}$$
 = _____ (mixed number).

- a) $(8-5)^2 = 9$.
- b) Since $\frac{9}{5}$ is an improper fraction, rewrite it as 1 $\frac{4}{5}$. Write $\frac{4}{5}$ and carry the 1.
- c) Since ⁸/₅ is improper, add the difference, 3, to 8, which equals
 11. Adding the carried number the whole number becomes 12.
- d) The answer is $12^{4}/_{5}$.