Derivatives:

- A. A derivative is calculated the exact opposite to that of an *integral*.
- B. A function's derivative is basically the equation for the slope of the or iginal function. Derivatives are usually expressed by: f'(x) or y' or $\frac{dy}{dx}$. f'(x) or y' is the first derivative. f''(x) or y'' is the second derivative and so on.
- C. Below are the basic rules for computing derivatives.
 - 1. The derivative of a constant is 0.

Ex [1] $\frac{dy}{dx} 5 = 0.$

2. The derivative of x^n is n^*x^{n-1} .

Ex [2] $^{dy}/_{dx} 3x^2 = 6x$.

3. The derivative of $f(x) \pm g(x) = f'(x) \pm g'(x)$

Ex [3] $\frac{dy}{dx} 6x^3 + 4x^2 + 8x - 4 =$

- a. This rule means you can take each term separately.
- b. So this becomes $\frac{dy}{dx} 6x^3 + \frac{dy}{dx} 4x^2 + \frac{dy}{dx} 8x \frac{dy}{dx} 4x = 18x^2 + 8x + 6x^2 + 8x^2 + 8x$ 8 - 0.
- c. The answer is $18x^2 + 8x + 8$.
- 4. The derivative of $[f(x)]^n$ is $f'(x)^*[f(x)]^{n-1}$.

Ex [4] $\frac{dy}{dx}(3x^2+5x+2)^3 =$

- a. You always want to work from the inside out.
- b. The first step is to take the derivative of the inside first. So $dy/dx 3x^2$ +5x + 2 = 6x + 5. This represents f'(x).
- c. Now, we need the derivative of the outside which is $3(3x^2+5x+2)^2$.
- d. Now, multiplying these two values together gives:

 $(6x+5)*3*(3x^2+5x+2)^2$ or $(18x+15)(3x^2+5x+2)^2$.

- 5. The derivative of f(x)*g(x) = f'(x)g(x)+f(x)g'(x).
 - a. This type of problem will probably not be found on a number sense test.

Ex [5] $\frac{dy}{dx}(3x-4)(x^2-3) =$

- a. First, multiply the derivative of the first times the second. So we get: $\frac{dy}{dx} 3x - 4 = 3$. So $3(x^2-3)$ is the first term.
- b. Next, multiply the first term times the derivative of the second. So we get: $\frac{dy}{dx}x^2 3 = 2x$. So we get 2x(3x-4) for the second term.
- c. The answer is $3(x^2-3)+2x(3x-4)$.

D. Common Derivatives:

- 1. The derivative of sin(f(x)) = f'(x) cos(f(x)).
- 2. The derivative of $\cos(f(x)) = -f'(x) * \sin(f(x))$.
- 3. The derivative of $tan(f(x)) = f'(x) * sec^{2}(f(x))$.
- 4. The derivative of $e^{f(x)} = f'(x) * e^{f(x)}$.
- 5. The derivative of $\ln (f(x)) = f'(x)^{*1}/_{f(x)}$.
- E. Examples

Ex [1] If $f(x) = \sin 4x$, then $f'(\pi/4) =$ _____

- a. First, take the derivative of 4x which is 4.
- b. The derivative of sin x is $\cos x$, so the derivative of $\sin 4x = 4 \cos 4x$.
- c. Plugging in $x = \frac{\pi}{4}$, we get $4 \cos \pi = 4(-1) = -4$.
- d. The answer is -4.

- Ex [2] Find the slope of the tangent line of $y = (x-2)^3$ at the point x = 4.
 - a. Since a derivative is the slope of the tangent line, we need to find y' and use the value x = 4 to find the slope.
 - b. $y' = 3(x-2)^2$, so plugging in x=4 we get $3(2^2) = 12$.
 - c. The answer is 12.

Ex [3] If $f(x) = 4x^3 - 12x^2 + 4x - 3$, then f''(2) =_____

- a. For this problem we are looking for the second derivative. So we need to find the derivative of the derivative, or just take the derivative twice.
- b. $f'(x) = 12x^2 24x + 4$
- c. So f''(x) = 24x 24. f''(2) = 24(2) 24 = 24.
- d. The answer is 24.