Changing base 2 to base 8:

- A. This method works because $2^3 = 8$.
 - 1. Since, $2^3 = 8$, we separate the number into groups of 3's starting from the right working to the left.
 - 2. Find the number each triplet would be equal to in base 10 and write them down in order. See the table below:

Base 2	Base 10	Base 2	Base 10
000	0	100	4
001	1	101	5
010	2	110	6
011	3	111	7

- There is no need to memorize these, since they can be evaluated easily. See *base b to 10*.
- B. Examples:
 - Ex [1] $1101110111_2 = ____8.$
 - a. Separate the number into triplets: 1 101 110 111.
 - b. Evaluating each triplet we get: 1 5 6 7.
 - c. The answer is 1567.
 - Ex [2] $101010110_2 = 8.$
 - a. Separate the number into triplets: 101 010 110.
 - b. Evaluating each triplet we get: 5 2 6.
 - c. The answer is 526.
- C. Notice if you are asked to go from base 4 to base 2, the method would be simple:
 - 1. Simply take each digit and write its base 2 equivalent. Refer to the table above.
 - Ex [1] $720_8 = ___2$.
 - a. Using the table above we know 7 = 111, 2 = 010, and 0 = 000.
 - b. The answer is 111010000.

Ex [2] $1273_8 = 2$.

- a. Using the table above we know 1 = 001, 2 = 010, 7 = 111, 3 = 011.
- b. Since the first number is represented by 001, we only write 1, since we cannot use 0's at the beginning of numbers.
- c. The answer is 1010111011.