Changing base 2 to base 4:

- A. This method works because $2^2 = 4$.
 - 1. Since $2^2 = 4$, we separate the numbers into groups of 2's starting from the right working to the left.
 - 2. Find the number each pair would be equal to in base 10 and write them down in order. See the table below:

Base 2	Base 10
00	0
01	1
10	2
11	3

- There is no need to memorize these since they can be evaluated easily. See <u>base b to 10</u>.
- B. Examples:
 - Ex [1] $110011011_2 = 4$.
 - a. Separate the number into pairs: 1 10 01 10 11. *Notice that the first number doesn't have a pair. This is because there is an odd number of digits.
 - b. Evaluating each pair we get: 1 2 1 2 3.
 - c. The answer is 12123.
 - Ex [2] $1000101_2 = 4$.
 - a. Separate the number into pairs: 1 00 01 01.
 - b. Evaluating each pair we get: 1011.
 - c. The answer is 1011.
- C. Notice if you are asked to go from base 4 to base 2, the method would be simple:
 - 1. Simply take each digit and write its base 2 equivalent. Refer to the table above.

Ex [1] $3120_4 = 2$.

- a. Using the table above we know that 3 = 11, 1 = 01, 2 = 10, and 0 = 00.
- b. The answer is 11011000.

Ex [2] $132_4 = 2$.

- a. Using the table above we know that 1 = 01, 3 = 11, and 2 = 10.
- b. Since the first set of numbers is 01, we only write 1, since no numbers (regardless of the base) start with 0.
- c. The answer is 11110.