Approximating eⁿ:

- A. Unfortunately, there is no easy way to calculate e raised to some power 'n' like there is with π . At least, not one that I know of. Because of this, one can only memorize approximates to these powers.
- B. Below are approximates of the powers of n, taken to the 8 th power. There should be little need to memorize any more than this.

eⁿ and its approximate value

e^1	2.7	e^5	150
e^2	7.5	e^6	400
e^3	20	e^7	1100
e^4	55	e ⁸	3000

C. Here are some ways we can use these approximations in a question:

Ex [1]
$$(5e)^3 =$$
 _____.

- a. Using the chart above, we can approximate this to be 5^3 x 20 or 125 x 20.
- b. $125 \times 20 = 2500$.
- c. The answer can be between 2386 and 2636.

Ex [2]
$$137e^7 =$$
_____.

- a. Using the chart we can approximate this to be 137×1100 .
- b. 137 x 1100 = 150700.
- c. The answer can be between 142727 and 157750.
- D. This method of memorizing is not ideal, but it was the way I did them when I was taking the tests. If you have your own way, then by all means use it.
- E. Also, note that these are already approximates. It would not be wise to approximate these approximates as you might get beyond the 5% window. These approximates, taken like they are, are guaranteed.