Polar And Rectangular Coordinates:

- A. Rectangular coordinates are what most people use when graphing coordinates. Given the point (a,b) you move over 'a' spaces on the x -axis, and then up or down 'b' spaces on the y-axis.
- B. Polar Coordinates are the same points as rectangular coordinates, only they are expressed in terms of 'r' and ' θ ' as the point (r, θ). Here is a picture of the relationship between polar and rectangular coordinates:

As you can see, r is the hypotenuse and θ is the angle.

- C. Change from Rectangular to Polar:
 - 1. To change from rectangular coordinates you should be familiar with the *basic trigonometric properties* and also *Pythagorean Triples*.

2.
$$r = \sqrt{a^2 + b^2}$$

3. $\theta = \tan^{-1} \left(\frac{b}{a} \right)$

- Ex [1] If $(2,2) = (r, \theta)$, then $\theta =$ _____ (degrees)
 - a. The answer is $\tan^{-1}(2/2)$ or $\tan^{-1}(1) = 45$ degrees.
- Ex [2] If $(6,-8) = (r, \theta)$, then r =_____
 - a. You should know the Pythagorean Triple (6,8,10). The answer is 10.
 - b. If you don't know this, then you can see that $\sqrt{6^2 + (-8)^2} = \sqrt{100} = 10$

D. Changing from Polar to Rectangular

- 1. Like above, you need to know *basic trigonometric properties*.
- 2. $x = r \cos \theta$
- 3. $y = r \sin \theta$

Ex [1] If
$$(4, \frac{\pi}{3}) = (x, y)$$
 then $y =$ _____.

a. The answer is $4\sin\frac{\pi}{3}$ which is $4(\sqrt{3}/2)$ which is $2\sqrt{3}$.

Ex [2] If $(6,60^{\circ}) = (x,y)$ then x =_____.

a. The answer is $6 \cos 60^{\circ} = 6 \text{ x}^{-1}/_2 = 3$.