Parabolas:

- A. A parabola is the graph of a quadratic equation. In other words, it is the graph of the function $y = ax^2 + bx + c$, sometimes written $y = a(x h)^2 + k$.
- B. When dealing with parabolas we are concerned with 3 things: x-intercepts, y-intercept, and the vertex.
- C. X-intercepts
 - 1. To find out how many x-intercepts there are, use the discriminant: $b^2 4ac$. If the discriminant = 0, then there is 1 x-intercept. If the discriminant > 0, then there are 2 x-intercepts. If the discriminant < 0, there are 0 x-intercepts.
 - 2. To find the x-intercepts, factor the equation and solve for y = 0. So the answer will always be (n,0) where n is the value(s) you get when solving for 0.
 - Ex [1] The graph of the equation $y = 2x^2 4x + 3$ has how many x-intercepts?
 - a. We use the discriminant: $b^2 4ac$.
 - b. $(-4)^2 4(2)(3) = 16 24 = -8$. Since this value is less than 0, the answer is 0 x-intercepts.
 - Ex [2] If the smallest x-intercept of the function $y = x^2 4x 5$ is (a,b) then a =_____
 - a. This time, we should factor the equation and solve for y = 0.
 - b. Factoring we get: (x 5)(x + 1) = 0. Solving both expressions we get x = 5 and x = -1. The smallest value is -1.
 - c. The x-intercept is (-1,0) so a = -1.

*Note: If a question ever asks for the 'b' value, the answer is always 0.

D. Y-intercepts

1. Y-intercepts are easy. Simply use x=0 and solve for y. If the expression is written as $ax^2 + bx + c$, the answer is (0,c). Otherwise, the answer is (0,n), where n is the value you get when solving for x = 0.

- Ex [1] The y-intercept of the function $y = 5x^2 3x + 4$ is (a,b). Then b =
 - a. The answer is simply 4.
- Ex [2] The y-intercept of the function $y = 2(x-3)^2 + 2$ is (a,b). Then b = _____
 - a. In this case, use x = 0 and solve for y.
 - b. $2(0-3)^2 + 2 = 2(9) + 2 = 20$.
 - c. The answer is 20.

*Note: If the question ever asks for the 'a' value, the answer is always 0.

E. Vertex

- 1. The vertex of the parabola is the highest (or lowest) point in the graph. It is written as the point (h,k). If the equation is written as $y = a(x h)^2 + k$, finding the vertex is very easy. However, if the equation is written as $y = ax^2 + bx + c$, then do the following:
 - a. To find 'h', use: $-b/_{2a}$.
 - b. To find 'k', you can plug 'h' into the equation and solve for y, or you can
 - use: $-\frac{(b^2 4ac)}{4a}$ Notice, the numerator is the same formula as the discriminant so this equation should be easy to remember.
 - Ex [1] If the vertex of the parabola, $y = 2(x-3)^2 + 4$ is (h,k), then k =____.
 - a. The answer is simply 4.
 - Ex [2] If the vertex of the parabola, $y = 4x^2 5x 1$ is (h,k), then k =____.
 - a. To find k, we need to first find the discriminant or $(-5)^2 4(4)(-1) = 25 + 16 = 41$.
 - b. The denominator is 4a = 4(4) = 16.
 - c. The answer is $-{}^{41}/_{16}$. If the question had asked for 'h' the answer would be $-{}^{b}/_{2a}$ or $-{}^{(-5)}/_{2(4)} = {}^{5}/_{8}$.